Computational fluid dynamics (CFD) study investigating the effects of torso geometry simplification on aspiration efficiency

نویسندگان

  • Kimberly Rose Anderson
  • Kimberly R. Anderson
  • Patrick O’Shaughnessy
چکیده

Anderson, Kimberly Rose. "Computational fluid dynamics (CFD) study investigating the effects of torso geometry simplification on aspiration efficiency. ii ACKNOWLEDGMENTS First and foremost I would like to thank my advisor, Renée. I cannot possibly thank you enough for providing me with the support and direction to complete this work. You sparked my interest in research and set me on the path to pursuing my PhD, and I will always be grateful to you for that. Thank you for indulging me on my various interests and side projects and providing me with the knowledge and resources to pursue those. And thank you for your guidance and focusing me on the tasks at hands when my ambitions got the better of me. I will always be honored to call you my advisor and mentor. I want to thank my family for always being there and supporting me through everything. To my parents, I can't express my gratitude enough. I wouldn't be where I am today if it wasn't for you instilling in me a love of learning and pushing me to always do my best. I appreciate your unfaltering belief in my ability to succeed and your unconditional support. And lastly, to my friends who were there to support me, who shared in the laughter and celebrations, and offered encouragement and support through the tears. Thanks for being there and helping me through this. iii ABSTRACT In previous studies truncated models were found to underestimate the air's upward velocity when compared to wind tunnel velocity studies, which may affect particle aspiration estimates. This work compared aspiration efficiencies using three torso geometries: 1) a simplified truncated cylinder; 2) a non-truncated cylinder; and 3) an anthropometrically realistic humanoid body. The primary aim of this work was to (1) quantify the errors introduced by using a simplified geometry and (2) determine the required level of detail to adequately represent a human form in CFD studies of aspiration efficiency. Fluid simulations used the standard k-epsilon turbulence models, with freestream velocities at 0.2 and 0.4 m s-1 and breathing velocities at 1.81 and 12.11 m s-1 to represent at-rest and heavy breathing rates, respectively. Laminar particle trajectory simulations were used to determine the upstream area where particles would be inhaled. These areas were used to compute aspiration efficiencies for facing the wind. Significant differences were found in vertical velocity and location of the critical area between the …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of the tongue geometry effects on the cavitation and performance of a centrifugal pump in off-design conditions

In this study, the effects of the volute tongue geometry variation on the head, efficiency, velocity distribution and cavitation structure of a centrifugal pump in the steady flow behavior under off-design conditions have been investigated. Numerical simulation modeling based on the  turbulence model with a hybrid grid is used to simulate the flow within the modeled pump. The flow is simulated ...

متن کامل

Simulation of the Effect of a Baffle Structure on Membrane Efficiency Using Computational Fluid Dynamics during the Clarification of Pomegranate Juice

Background and Objectives: Pomegranate juice (PJ) contains large particles that stick to evaporator walls causing off flavors in the concentrate due to burning. Microfiltration is used to clarify PJ. Fouling is a limiting phenomenon that can prevent the industrialization of membrane clarification. Changes in the geometry of the membrane module such as using baffles are useful to decrease this p...

متن کامل

Investigation of the Effect of Geometry and Type of Nanofluids on the Heat Transfer Inside the Microchannel using Computational Fluid Dynamics (CFD)

The purpose of this article is the numerical study of flow and heat transfer characteristics of Nanofluids inside a cylindrical microchannel with rectangular, triangular, and circular cross-sections. The size and shape of these sections have a significant impact on the thermal and hydraulic performance of the microchannel heat exchanger. The Nanofluids used in this work include water and De-Eth...

متن کامل

CFD Simulation of Dry and Wet Pressure Drops and Flow Pattern in Catalytic Structured Packings

Type of packings and characteristics of their geometry can affect the flow behavior in the reactive distillation columns. KATAPAK SP is one the newest modular catalytic structured packings (MCSP) that has been used in the reactive distillation columns, recently. However, there is not any study on the hydrodynamics of this packing by using computational fluid dynamics. In the present work, a 3D ...

متن کامل

Combined application of computational fluid dynamics (CFD) and design of experiments (DOE) to hydrodynamic simulation of a coal classifier

Combining the computational fluid dynamics (CFD) and the design of experiments (DOE) methods, as a mixed approach in modeling was proposed so that to simultaneously benefit from the advantages of both modeling methods. The presented method was validated using a coal hydraulic classifier in an industrial scale. Effects of operating parameters including feed flow rate, solid content and baffle le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016